로그인회원가입장바구니고객센터마이페이지회사소개
kangcom
전체
Home >   >   > 

파이썬을 이용한 머신러닝, 딥러닝 실전 앱 개발: 실무에서 즉시 활용 가능한 머신러닝, 딥러닝 실전 앱 개발

 [(위키북스 데이터 사이언스 시리즈_032)]
   
지은이 쿠지라 히코우즈쿠에, 스기야마 요우이치, 엔도 슌스케   |   출판사 위키북스  |   발행일 2019년 03월 28일
 
클릭하시면 큰 도서이미지를 보실 수 있습니다.
판매가 27,000원24,300원 10%
마일리지 5% 1,350원
발행일 2019-03-28
ISBN 1158391471 | 9791158391478
기타정보 번역서 | 356쪽 | 일반
예상출고일 1~2일 이내 (근무일기준)
배송비 무료배송
   
일반
   
 

최근에는 머신러닝/딥러닝 환경을 갖추기만 하면, 누구라도 쉽게 머신러닝/딥러닝을 할 수 있게 되었습니다. 그래서 다양한 서비스와 애플리케이션에서 머신러닝을 활용하는 경우를 볼 수 있습니다.

이 책은 《파이썬으로 배우는 머신러닝 딥러닝 실전 개발 입문》의 활용편으로, 이전 책에서는 데이터를 수집하는 스크레이핑부터 기본적인 머신러닝 딥러닝을 다루었다면, 이번 《파이썬을 이용한 머신러닝, 딥러닝 실전 앱 개발》에서는 기본적인 머신러닝 딥러닝부터 좀 더 실용적인 머신러닝 딥러닝 예제를 다룹니다.

머신러닝/딥러닝은 깊게 들어가면 들어 갈수록 정말 넓은 분야입니다. 일단 머신러닝과 딥러닝이 무엇인지 이 책에서 다루는 다양한 예제로 체험해보기 바랍니다.

★ 이 책에서 다루는 내용 ★

- 맛있는 와인 판정하기, 얼굴에 모자이크 처리하기, 손글씨 숫자 판정하기, 우편 번호를 자동으로 인식하기, 동영상에서 특정 장면 추출하기
- 문장을 형태소로 분할하기, 단어의 의미를 벡터로 만들기, 문장 분류하기
- 사진 속의 물체 인식하기, 뉴스 기사 카테고리 분류하기, 요리 사진을 기반으로 칼로리 확인하기



▣ 01장: 머신러닝과 딥러닝
1-1. 머신러닝
__머신러닝이란?
__머신러닝으로 할 수 있는 것
__구체적으로 머신러닝을 어떻게 적용할 수 있을까?
__딥러닝이란?
__머신러닝이 실용화된 이유
__머신러닝의 구조
__머신러닝의 종류
1-2. 머신러닝 과정 시나리오
__머신러닝 과정 시나리오
__머신러닝의 기본 과정
1-3. 머신러닝에서 사용할 데이터 만드는 방법
__무엇을 위해 머신러닝을 사용하는가?
__어떻게 데이터를 수집할까?
__수집한 데이터를 저장하는 형식
__입력에 사용하는 데이터
__데이터 정규화
1-4. 설치가 필요 없는 Colaboratory
__Google Colaboratory
__Colaboratory의 제약
__Colaboratory의 기본 사용 방법
__응용 힌트
1-5. Jupyter Notebook 사용 방법
__Jupyter Notebook이란?
__Jupyter Notebook 실행하기
__신규 노트북 만들고 실행하기
__노트북에 셀을 여러 개 만들기
__값을 그래프로 출력하기
__마크다운 기법으로 문서 만들기
1-6. 개별적으로 프로그램을 실행하는 방법
__명령 라인이란?
__프로그램 실행하기
__모듈 설치하고 사용하기

▣ 02장: 머신러닝 입문
2-1. 가장 간단한 머신러닝 예
__scikit-learn에 대해
__머신러닝으로 AND 연산 해보기
__개선 힌트
2-2. 붓꽃 분류하기
__붓꽃 데이터 내려받기
__붓꽃 데이터를 사용해 머신러닝 하기
__추가 설명: scikit-learn의 샘플에도 들어 있는 붓꽃 데이터
__응용 힌트
2-3. AI로 맛있는 와인 판정하기
__와인의 품질을 머신러닝으로 분류하기
__와인 데이터 내려받기
__와인 데이터 살펴보기
__와인 품질 판정하기
__정답률 올리기
2-4. 과거 10년 동안의 기상 데이터 분석하기
__기상 데이터 사용하기
__과거 10년 동안의 기상 데이터를 얻는 방법
__기온 평균 구하기
__월별 평균 기온 구하기
__기온이 30도 넘는 날 구하기 - Pandas 필터
__회귀 분석으로 내일 기온 예측하기
2-5. 최적의 알고리즘과 매개변수 찾기
__응용 힌트
__최적의 알고리즘 찾기
__최적의 매개변수 찾기
__개선 힌트

▣ 03장: OpenCV와 머신러닝 - 이미지/동영상 입문
3-1. OpenCV
__OpenCV
__이미지 읽어 들이기
3-2. 얼굴 검출 - 자동으로 얼굴에 모자이크 처리하기
__얼굴 인식
__얼굴 검출 프로그램 만들기
__OpenCV로 모자이크 처리하기
__사람 얼굴에 자동으로 모자이크 처리하기
__OpenCV의 얼굴 검출은 옆모습과 기울어진 얼굴을 잘 검출하지 못함
__개선·응용 힌트
3-3. 문자 인식 - 손글씨 숫자 판정하기
__손글씨 숫자 광학 인식 데이터세트 사용하기
__이미지 머신러닝하기
__자신이 작성한 이미지 판별하기
__이미지를 대상으로 하는 머신러닝
__개선 힌트
3-4. 윤곽 검출 - 엽서의 우편 번호 인식하기
__엽서의 우편 번호 인식하기
__OpenCV로 윤곽 검출하기
__엽서에서 우편 번호 영역 검출하기
__추출한 숫자 이미지 판정하기
__개선 힌트
__응용 힌트
3-5. 동영상 분석 - 동영상에서 열대어가 등장하는 부분 검출하기
__동영상 분석
__화면에 움직임이 있는 부분 추출하기
__이미지 파일 쓰기
__동영상에서 열대어가 나오는 부분 검출하기
__머신러닝으로 동영상에서 열대어가 많이 나오는 부분 찾기
__개선 힌트
__응용 힌트

▣ 04장: 자연어 처리하기
4-1. 언어 판정하기
__언어 판정
__머신러닝으로 언어 판정 해보기
4-2. 문장을 단어로 분할하기
__형태소 분석
4-3. 단어의 의미를 벡터로 만들기
__단어 벡터
__단어의 의미를 벡터로 만들기
__응용 힌트

▣ 05장: 딥러닝
5-1. 딥러닝(심층학습)
__딥러닝이란?
5-2. TensorFlow 입문
__TensorFlow란?
__TensorFlow 설치와 동작 확인하기
__TensorFlow 데이터 플로 그래프
5-3. TensorFlow로 붓꽃 분류하기
__붓꽃 분류 문제 복습하기
__Keras로 가는 길
__MNIST 데이터 사용하기
5-4. 딥러닝으로 손글씨 숫자 판정하기
__굉장히 간단한 신경망으로 MNIST 분류하기
__MLP를 사용해 MNIST 분류 문제 풀기
__개선 힌트
5-5. 사진에 찍힌 물체 인식하기
__CIFAR-10이란?
__CIFAR-10 내려받기
__CIFAR-10 분류 문제를 MLP로 풀기
__CIFAR-10 분류 문제를 CNN으로 풀어보기
__학습 결과 저장하기
__응용 힌트
5-6. 이미지 데이터로 일본어 가타카나 판정하기
__머신러닝의 입력과 출력
__이미지 학습시키기 - 이미지 리사이즈

▣ 06장: 머신러닝으로 업무 효율화하기
6-1. 업무 시스템에 머신러닝 적용하기
__기존의 업무 시스템
__업무 시스템에 머신러닝 도입하기
6-2. 학습 모델을 저장하고 읽어 들이는 방법
__학습한 학습기를 저장하고 다시 사용하는 방법
6-3. 뉴스 기사의 카테고리 판정하기
__뉴스 기사 자동 분류
__TF-IDF
__딥러닝으로 정답률 개선하기
__직접 문장을 지정해 판정하기
__개선 힌트
6-4. 웹에서 사용할 수 있는 뉴스 카테고리 판정 애플리케이션 만들기
__머신러닝을 웹 애플리케이션에서 사용하는 방법
__웹 애플리케이션에서 카테고리를 분류하는 모델 사용하기
__API를 호출하는 웹 애플리케이션 만들기
__개선 힌트
6-5. 머신러닝에 데이터베이스(RDBMS) 사용하기
__데이터베이스를 기반으로 데이터를 학습시키는 방법
__데이터베이스에서 직접 머신러닝 시스템에 데이터 전달하기
__키와 체중 데이터베이스 만들기
__키, 체중, 체형 학습하기
__개선 힌트
__응용 힌트
6-6. 요리 사진을 기반으로 칼로리를 알려주는 프로그램 만들기
__요리 사진 판정 방법
__Flickr API를 사용해 사진 수집하기
__직접 찍은 사진으로 테스트하기
__개선 힌트

▣ 부록: 이 책의 예제를 실습하기 위한 환경 준비하기
__Python과 머신러닝 환경 준비하기
__Windows에 환경 구축하기
__macOS에 개발 환경 구축하기
__Docker 설치하기
__언어 처리 라이브러리
쿠지라 히코우즈쿠에
파이썬, PHP, 자바스크립트 등의 프로그래밍 언어, 머신러닝과 알고리즘 등의 서적을 다수 집필했다. 무료 소프트웨어도 다수 공개하고 있다. 대표작으로는 일본어 프로그래밍 언어 ‘나데시코’, 텍스트 음악 ‘사쿠라’ 등이 있다. 2001년에 온라인 소프트웨어 대상을 받았으며, 2005년 IPA에서 슈퍼크리에이터로 인정받았다. 2010년에 OSS 공헌자 상을 받았다(웹 사이트: https://kujirahand.com).

스기야마 요우이치
주식회사 J-Tech Japan의 글로벌 엔지니어. 사용자 기업의 업무 개선을 위해 일하고 있으며 태국과 일본을 자주 왕복하고 있다.

엔도 슌스케
주식회사 J-Tech Japan의 매니저이자 영업 엔지니어. 새로운 기술을 매우 좋아해서 집 안에 IoT 장비를 잔뜩 설치해 뒀다.


<역자>

윤인성
홍차와 커피를 좋아하며 요리, 음악, 그림, 스컬핑 등이 취미다. 『모던 웹을 위한 JavaScript+jQuery 입문』 『모던 웹을 위한 Node.js 프로그래밍』 『모던 웹 디자인을 위한 HTML5+CSS3 입문』 등을 저술하였으며, 『텐서플로로 시작하는 딥러닝 입문』 『모던 리액트/리덕스 프로그래밍』 『크롤링 핵심 가이드』 『파이썬을 이용한 웹 크롤링과 스크레이핑』 『모던 자바스크립트 개발자를 위한 리액트 프로그래밍』 『최신 표준 HTML5+CSS3 디자인』 『파이썬을 이용한 머신러닝, 딥러닝 실전 개발 입문』 『스위프트로 시작하는 아이폰 앱 개발 교과서』 『유니티 게임 이펙트 입문』 『모던 웹사이트 디자인의 정석』 등을 번역했다.


등록된 서평이 없습니다.
실전에 강한 PLC...
정완보
선택된 상품을 찜하실 수 있습니다. 선택된 상품을 바로구매 하실 수 있습니다.
디지털 논리회로...
임석구
선택된 상품을 찜하실 수 있습니다. 선택된 상품을 바로구매 하실 수 있습니다.
Cocoa Internals...
김정
선택된 상품을 찜하실 수 있습니다. 선택된 상품을 바로구매 하실 수 있습니다.
 
전체평균(0)
회원평점   회원서평수 0
위키북스 출판사의 신간
Vue.js 철저 입문: 기초부터 실전 애플리케이션 개발까지
카와구치 카즈야, 키타 케이스케, 노다 요헤이, 테지마 타쿠야, 카타야마 신야 저
0원
(0%↓+1%)
 
Vue.js 철저 입문: 기초부터 실전 애플리케이션 개발까지
카와구치 카즈야, 키타 케이스케, 노다 요헤이, 테지마 타쿠야, 카타야마 신야 저
0원
(0%↓+1%)
 
Vue.js 철저 입문: 기초부터 실전 애플리케이션 개발까지
카와구치 카즈야, 키타 케이스케, 노다 요헤이, 테지마 타쿠야, 카타야마 신야 저
27,000원
(10%↓+5%)
 
하이퍼레저 패브릭 철저 입문: Hyperledger Fabric을 이용한 블록체인 기반 시스템 구축과 운용
토모노리 시미즈, 교코 타마치, 하야토 우에노하라, 타쿠요시 사토, 신 사이토, 히토시 콘도, 츠요시 하라야마, 아키히로 카사하라, 타츠야 이와사키, 카즈유키 오가사와라 저
25,200원
(10%↓+5%)
 
데이터 분석을 위한 파이썬 철저 입문 (개정증보판) : 기초 문법부터 실무에 필요한 데이터 분석 기술까지 한 번에 배우는
최은석 저
25,200원
(10%↓+5%)
 
이메일주소수집거부